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I. 

There have been a number of studies over the past few years 

regarding the problems associated with coupling two helicopters 

together in such a way as to lift a single load, thus increasing 

the load that can be carried with a given helicopter (References 

1-5). A specific configuration geometry shown in Figure 1 and 

referred to as the twin-lift system is of interest here. 

Preliminary flight demonstrations of this concept described in 

Reference 4 have indicated that while the configuration 

described here can be flown, the pilot workload is high. A 

simplified set of equations of motion were formulated for this 

dynamic system, describing what was assumed to represent the most 

critical aspect of the dynamics and control of such a system. An 

investigation of this reduced system is presented in Reference 1. 

Among other results, it was found that the stability of the 

system is critically dependent upon the location of the tether 

attachment point relative to the center of gravity of the 

helicopters and that a fairly rapidly divergent mode is 

associated with the attachment point located below the center of 

gravity of the helicopter. Further details of this study can be 

found in Reference 1. 

This report extends these studies and presents the complete 

linearized equation of motion for the twin-lift system about a 

hovering trim condition and discusses the features of the 

additional modes of motion involved in the complete system that 
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are not included in the formulation of Reference 1. 

Two sets of equations of motion are presented in this 

report. Part I presents the equations of motion of the twin lift 

system assuming that the yaw angles of the helicopter are 

constant and that the helicopters have a specific orientation 

relative to the load system. Part I 1  generalizes these results 

to permit each helicopter to have a yaw degree of freedom and 

more general geometric characteristics than in Part I. The 

derivation of the equations of motion is described in each 

section and the equations of motion are presented. It is assumed 

that both the helicopters, referred to as the master and slave, 

are identical and that the hovering trim condition consists of a 

rectangular frame orientation, with the tethers vertical as shown 

in Figure 1. Certain simplifications are made in the aerodynamic 

derivatives that are used to describe the helicopter 

aerodynamics. However it should be evident from the formulation 

how to add a more complete aerodynamic description of the 

helicopter to these equations i f  desired. One of t h e  objectives 

of this study as well as the earlier one described in Reference 1 

was to obtain physical insight into the important features of 

this dynamic system and in particular to note how the system 

differs from dynamics and control problems of a single helicopter 

carrying a single load, a problem that has been exhaustively 

studied in the past. 

Using an aerodynamic description of the helicopters that 

neglects the aerodynamic derivatives that couple the 
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longitudinal and lateral-directional dynamics it can be shown 

that in the case in which the tethers of both helicopters are 

equal in length, the symmetry of the system can be used to 

decouple the equations of motion of this complex system into 

simpler systems which can be used to gain physical insight and 

draw analogues with other systems. In particular it is shown 

that for the linearized system with the assumptions noted above 

and the helicopters oriented initially either with their 

longitudinal axes parallel or perpendicular to the spreader bar 

that the complete equations of motion presented in Part I1 

reduced to the following s e t s :  

The complete sixteen degree of freedom (DOF) system 

described in Part I1 reduces to four simpler systems: 

1. Yaw motion of Slave Helicopter ( 1  DOF) 

2. Yaw motion of Master Helicopter (1 DOF) 

3 .  Planar motion equations ( 7  DOF). This corresponds 

to system motion in the plane of the paper in 

Figure 1. (Reference 1 )  

4 .  Non-Planar Motion equations ( 7  DOF). This is 

system motion out of the plane of the paper in 

Figure 1. 

1. and 2. will not be discussed further as they are simple first 

order systems. The planar motion equations are the system 

examined at length in Reference 1. Features of the non-planar 

motion are considered in some detail later in the report. It 

also can be shown that symmetry can be used to divide the planar 
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and non-planar motion dynamics into simpler systems. Both the 

planar and non-planar systems can be divided into anti-symmetric 

and symmetric motions. The anti-symmetric motions involve "in- 

phase" motion of both helicopters and are essentially the modes 

involved in maneuvering the system from place-to-place. In the 

planar case this is a four-degree-of-freedom system which bears 

some similarities to a single helicopter with a sling load as can 

be seen from Reference 1. Two symmetric systems are present, one 

involving one degree of freedom vertical translation similar to 

the vertical translation of a single helicopter. The other 

symmetric motion involves two degrees of freedom and essentially 

is the same as the dynamics of a helicopter tethered to a fixed 

point on the ground ( 6 ) .  The stability characteristics of this 

motion are very sensitive to the location of the attachment point 

relative to the center of gravity of the helicopter. 

The non-planar motion can also be divided into anti- 

symmetric and symmetric motions. The anti-symmetric motion (four 

degree of freedom) again i n v o l v e s  "in-phase" motion of the 

helicopters and translation of the system as a whole, and is 

essentially the same as that of a single helicopter carrying a 

sling load ( 7 ) .  The sling load is a compound pendulum with the 

spreader bar mass and the load mass being the two loads. The 

symmetric motion (three degrees of freedom) involves rotation of 

the entire system about a vertical axis through the load. The 

non-planar motion is considered in more detail later in this 

report. 
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It is interesting also to note that this division into anti- 

symmetric and symmetric modes also indicates a separation of the 

control actions. If the pilots of the master and slave 

helicopter apply exactly equal inputs system motion occurs only 

in the anti-symmetric modes, the system motion is that required 

to move the system from place to place. If exactly equal and 

opposite inputs are applied to the master and slave helicopters 

then only symmetric modes are excited and the total system moves 

about a fixed point in space. 

In general it may be desirable to consider a system in which 

the tether lengths are unequal in which case the decoupling into 

symmetric and anti-symmetric modes does not apply. However 

studies of the unequal tether case in Reference 1 do not indicate 

a strong influence of unequal tether length on the modes of 

motion. 
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Coordinates used in the development of the equations of 

motion are shown in Figures 1-4. Generally the following 

subscripts are used to distinguish slave characteristics from 

master characteristics. 

( )s, ( l 1  slave associated quantities 

( I M ,  ( l 2  master associated quantities 

associated with tether 
( )T 

associated with spreader bar 
( )B 

Geometry of Load 

E( 1, A( I 
L 

H1 

HZ 

hi 
Z 

hh 
h', H 

Masses 

MH 

sum and difference coordinates 
spreader bar length, ft 

slave tether length, ft 

master tether length, ft 

displacement of load below spreader bar, ft 

slave attachment point - center of gravity 
spacing, ft 

master attachment point - center of gravity 
space, ft 

are used in the case of equal slave and 
master dimensions, ft 

helicopter mass, slugs 
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M L  

MB 

ICMB 

Dimensionless Parameters 

MB + M L  
2MH 

l J =  

Superscripts 

e 

e 

0 

load mass, slugs 

spreader bar mass, slugs 

2 spreader bar moment of inertia, slug-ft 

aerodynamic force derivatives in frame axes 
Moment derivatives with respect to attachment 
point. Velocities of helicopter center of 
gravity. 

Stability derivative not divided by mass 
ax - 

or inertia (Xu = ;6;;' 

The standard notation for stability derivatives is used, e . g . ,  

1 aM M = - -  
au 

In this notation moment derivatives are relative to the 

helicopter center of gravity. 
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EQUATIONS OF MOTION: PART I 

(Fourteen Degrees of Freedom) 
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Since the equations of motion for this dynamic system are 

quite lengthy, the derivation of a reduced set of equations of 

motion is dcscribed in this section and then extended to the 

general case in Part 11. Here the tether attachment points are 

assumed to be located at the helicopter’s center of gravity and 

the yaw angles of both the master and slave helicopters are 

assumed to be zero. That is, the yaw orientation of both 

helicopters remains constant at an initial orientation in space 

which is as shown in Figure 1. In Part 11, both of these 

restrictions on the equations of motion are removed. The 

helicopters may be rotated 90 degrees from the orientation in 

Figure 1 by interchanging aerodynamic stability derivatives as 

noted later (1). Arbitrary initial yaw angles are included in 

the latter formulation. Previous studies of a seven degree of 

freedom model of this dynamic system are described in Reference 

1. This s e t  I czegrees of freedom is referred to as the planar 

case. Motion is permitted only in the plane of the paper in 

Figure 1. This section therefore, describes the development of 

the equations of motion including motions out of the plane of 

Figure 1. 

The coordinates used to develop the equations of motion are 

shown in Figure 2 .  The choice of a relative coordinate system is 

particularly convenient if a Lagrangian formulation is used. A 

space reference frame ( X G ,  Y G ,  ZG) is defined, with XC parallel 

to the local gravity vector. The following coordinates are 

8 
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selected as degrees of freedom: 

(XS, YS, Z S )  translational displacements of the slave 

helicopter attachment point (center of mass) 

with respect to space, z s  is parallel to the 

local gravity vector and xs is a displacement 

parallel to the longitudinal axis of the 

slave helicopter. The orientation of the 

longitudinal axis of the slave helicopter 

remains fixed in space. 

@ T I  e T 1  Euler angles describing the orientation of 

the slave helicopter tether from the G axis 

system. @TI is a rotation about the XG axis 

and 0 ~ 1  is the second rotation about the 

deflected axis (Y1' ) 

@ B l ,  J I B 1  Euler angles describing the orientation of 

the spreader bar with respect to space. @ s i  

is a rotation about an axis parallel to X C ,  

and J l s l  is a rotation about the deflected 

axis ZB'. 

Euler angle describing the orientation of the 

load triangle. 0~ is a rotation about the 

spreader bar axis YB where Ye is parallel to 

the spreader bar axis. 

@T2, 6 T 2  Euler angles describing the orientation of 

the tether to the master helicopter. ( Q T ~  is 

a rotation about an axis parallel to XG and 

6 T 2  is a rotation about the deflected axis$', 
2 

9 
0 
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These ten degrees of freedom taken with the pitch and roll angles 

of each helicopter e n ,  & M ,  e s ,  Cbs comprise the fourteen degrees 

of freedom of the system. 

master and slave respectively. 

The subscripts M and s refer  t o  the 

The displacements of the four masses involved in the system, 

the mass of each helicopter M H ,  the mass of the spreader bar MB 

and the mass of the load ML can be written in terms of the 

geometry of the sling, 

Hi the tether length of the slave helicopter 

H2 the tether length of the master helicopter 

L the spreader bar length 

2 the distance of the load mass below the spreader bar 

and the rotation matrices 

@ =  

1 

0 [ 0 
D 

e =  

b 

0 

1 

0 ce 

'I 1 

SJ, 

CJ, 

0 

c = cos 

s= sin 

The displacements of each mass are / 
J 

a.) slave helicopter center of mass (attachmek. 

10 
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bottom of slave tether 

spreader bar center of mass 

bottom of master tether 
m 0 )  

master helicopter center of mass (attachment point) 

load center of mass / \  

The kinetic energy of the system due to translation then can 

be written as 
0 

a 

0 

To this must be added the kinetic energy due to the moments of 

inertia of the helicopters and the moment of inertia of the 

spreader bar. The contributions of the helicopters assuming 

small angles are 
11 
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It is assumed that both the master and slave helicopter are 

identical. The contribution of the moment of inertia of the 

spreader bar assuming it to be a slender rod such that IYY = 0 

and IXX = I Z Z  = ICMB is 

1 = - I  T~~ 2 CMB B1 

The potential energy of the system is 

V = -MHg z - M g (z-component of PcMB) 
S B 

- M g (z-component of P ) - MHg (z-component of P ) L CML M 

Lagrange’s equation may now be used to develop the equations of 

motion. Since a large amount of algebra is involved, MACYSMA was 

used to determine the equations of motion. The MACYSMA 

formulation treated only the translational kinetic energy terms. 

The equations of motion were linearized about an arbitrary 

initial geometric configuration of the system assumed that all 

initial velocities are zero, that is only the hovering trim state 

is considered. Certain simplifications in the kinetic energy 

expression arise due to the assumption that all initial 

velocities are zero. In this case, the derivative of the kinetic 

energy with respect to displacements involves only products of 

velocities and thus will be zero in the linearized hover case, 

i.e., 

- -  - 0  aT 
aqi 
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The following names were used for the variables in the 

MACYSMA program 

tt kinetic energy 

faitl, @TI, initial value fait10 

fait2, ( b ~ 2  

faibi, @ s i  

saib2,  JIB^ 

satatl, e T 1  

sitat2, eT2 

sitall, Q L  

Other symbols relate directly to the notation above. Thus 

MACYSMA is used to form the kinetic energy and then calculate 

The potential energy derivatives are also calculated. Helicopter 

body rotation is uncoupled from this procedure and these degrees 

of freedom will give rise to four additional equations. The 

spreader bar moment of inertia g i v e s  contributions to the J l ~ i  and 

Q)B 1 equations 

'@B 1 

a T  .* 

(--- = ICMB Q B ~  A d t  
d 

"B 1 

13 
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The effect of the external aerodynamic forces acting on the 

helicopter is obtained by calculating the virtual work, 

where L = T - V 

and 

The external forces acting on the helicopter are expressed as 

Note that these forces must be expressed in gravity axes and not 

body axes. The virtual work of the aerodynamic forces is: 
0 

a 

a 

0 

The displacements of the master helicopter must be expressed in 

terms of the coordinates. For small angular displacements: 

Second order terms are retained in ~ Z M  because the vertical 

aerodynamic forces ZM and ZS have non zero values in the 

equilibrium hovering state. The X and Y forces are zero in 

equilibrium. The equilibrium values of the Z forces are d e n o t e d  

ZMO and Z S O .  Thus 

14 
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The equilibrium values of the vertical aerodynamic forces for the 

rectangular equilibrium state where all initial values of the 

angular coordinates are zero can be seen by inspection to be 

Thus the virtual work contributions to the equations of motion 

are 

X AXM + AXs 
S 

yS AYM + AYs 

+ AZM + h Z s  - -  - g(2MH + M L  + MB) + AZM + AZs z s 'MO + 'SO 

ML + MB 
@T 1 -H1(AYM + ZMo aT1) = - HIAYM + g H 1 ( M H  + 2 ) 'T1 

) - LAZM ML + MB 
@B 1 - L ( Z M o  + AZ,) = gL(MH + 2 

'B 1 L AXM 

0 'L 

15 
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(I) 

Note that some constant terms appear which will be balanced by 

terms on the right hand side and in addition there are 

contributions to the spring matrix due to the initial value of 

the Z-force. Only the dominant aerodynamic derivatives are 

included in this mode. The perturbations in the aerodynamic 

forces in a gravity fixed reference frame are: 

AX = X u + XB1 B~ - T~ e 
U 

AY = Yvv + Y A l  

A 2  = Zww + Zec 

+ To 6 

eC 

For the slave helicopter 

u = k  
S S 

v = +s 
S 

w = i  
S S 

For the master helicopter 

v = j l s  + H2 lT2 - H1 aT2 M 

- @Bl M S 
w = i  

16 
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The four equations describing the helicopter body motions are 
b I  

I eM = mM 

Ix 4M = ALM 

Y 
I. 

where 

AM = MUu + q + M B l  B 1  
q 

AL = ivv + i p + iA1 A1 P 

where for simplicity aerodynamic coupling derivatives have been 

neglected. 

Thus using these results with the output of the MACYSMA 

program the equations of motion can be written as in general as, 

[ M I  {;} + [C] {k} + K {x} = B {u} 

where the fourteen motion variables are: 

and the controls are: 

The [ M I ,  [C], [K] and [B] matrices can be obtained for this 

case from the more general matrices given in the next section. 

The equations have been normalized by mass and inertia. With the 

exception of the eL equation, the first ten equations have been 

divided by the helicopter mass (MH). The load coordinate (OL) 

17 



0 
equation is divided by the load mass ( M L ) .  The pitch and roll 

moment equations are divided by the respective moments of inertia 

of the helicopter. 

The following nondimensional quantities are introduced: 
a 

, ratio of spreader bar plus load mass M B  + 

2 M H  to total helicopter mass 
l J =  

, ratio of spreader bar mass to load M B  

+ M B  mass plus spreader bar mass. 
B =  

a 

* 

a 

e 

0 

Note that 
M .  

It can be noted from the M ,  C, and K matrices that the equations 

of motion for the complete fourteen degree-of-freedom system 

decouple into two seven degree-of-freedom systems, the planar 

dynamics studied in Reference 1 associated with the following 

degrees of freedom: 

T 
{xp} = [Y,, z s 9  6T19 6,19 6T2, 6,s 

The remaining coordinates describe what will be referred to as 

the non-planar motion. It is associated with the following 

degrees of freedom 

18 



Note that a slightly different notation is used in Reference 1 

for the coordinates. 
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EQUATIONS OF MOTION: PART I1 

(Sixteen Degrees of Freedom) 
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The previous section described in detail the derivation of 

the equations of motion for the twin lift system. The 

formulation in Part I is restricted to the tether attachment 

points of both helicopters located at their respective centers of 

gravity. In addition the initial yaw orientation of each 

helicopter is assumed to be either perpendicular or parallel to 

the load suspension frame and the yaw angles are assumed to 

remain zero throughout the ensuing perturbed motion. The 

formulation is given for in Part I for the longitudinal axes of 

the helicopters perpendicular to the spreader bar in the initial 

state. It can be seen from Part I that the case in which the 

helicopters are rotated 90' is readily treated by interchanging 

the aerodynamic stability derivatives. 

In this section, the formulation is extended to include 

vertical spacing between the tether attachment points and the 

centers of gravity of each helicopter. This dimension was shown 

to have an important effect on the stability of the twin lift 

system in the planar case. In addition, the initial orientation 

of the master and slave helicopters with respect to the load 

frame is arbitrary as shown in Figure 3 .  The following 

quantities are added in this section: 

+ S O  trim or initial yaw angle of slave helicopter relative 

to frame (spreader bar) 

+ M O  trim or initial yaw angle of master helicopter relative 

0 

to frame (spreader bar) 
2 0  



0 

0 

e 

0 

D 

D 

A& change in yaw angle of slave helicopter measured from 

initial orientation of slave helicopter. 

A$M change in yaw angle of master helicopter relative to 

initial orientation of master helicopter. 

The equations of motion are formulated such that it is assumed 

that the yaw motion of the master relative to the slave 

helicopter, 

A+M - A% 

is a small quantity. The change in yaw angle of the slave 

helicopter is not restricted to be small. 

Two equations of motion are added to the dynamic system 

described in Part I. 

S 
6~~ A$s - Nr A$s = N 

6~~ 

and 

- N A&M = N 6 
6~ R TRM A&M r 

These modifications to the equations of motion can be 

incorporated into the equations of motion in the following way. 

A frame axis system (XF, YF, ZF) is added which moves about ZF 1 

with the change in yaw angle of the slave helicopter as shown ? 

Figure 4 .  Within the framework of the small angle assumptioni 
JI 

made in the linearization of the equations of motion, &el c d  

interpreted as the rotational displacement of the spreader ' 

relative to space. Note however, that the other angular 

coordinates describing the system motion rotate with A&s 

helicopter body axes are now misaligned from the frame e 

21 
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Figure 4, the relative spreader bar motion is also shown. Thus 

to summarize: 

( X F ,  Y F ,  Z F )  

/. 

!. 
The equations 

le 

e 

e 

Frame axes rotate with Ass. The frame motion 

variables defined in Part I are perturbations 

relative to this axis system. (Figure 4 )  

Slave helicopter body axes. Misaligned from 

frame axes by # S O  and rotate with A b  and 

thus remain in a fixed orientation relative 

to the frame axes. 

Master helicopter body axes. Misaligned from 

frame axes by J ~ M O  and rotate with A # M .  Thus 

it is assumed that in the disturbed motion 

that (A$M - A ~ J s )  is a small quantity. 

of motion are now modified to account for the 

misalignment of the helicopter body axes and the frame axes. The 

stability derivatives of the helicopter are given in terms of 

velocities and forces oriented in the body axis directions. Note 

that these are not true body axes as they do not rotate with 

either the pitch or roll angles and thus the thrust vector must 

be accounted for in the expressions for the longitudinal and 

lateral aerodynamic forces. In addition, the equations must 

account for the fact that the tether attachment point is being 

used as the reference frame for the translational velocities. 

First, the transformation of the aerodynamic derivatives is 

considered and then additional inertial and gravity terms due to 

the spacing between the attachment point and the center of 

gravity of each helicopter are considered. In this formulation 

22  



only the dominant aerodynamic derivatives of the helicopter are 

considered. The formulation indicates how additional terms may 

be included. It is assumed that the following aerodynamic 

derivatives characterize the helicopter: 

‘U’ yV , MU ’ M 
4’ LV , LP ’ 

The following control derivatives are included 

* 

a 

a 

‘B1 ’ MB1 ’ ’A1 ’ LAl ’ N6TR’ ‘€IC 

The velocities of the helicopter center of gravity expressed in 

terms of attachment point velocities (UT, VT) and attachment 

point, center of gravity spacing (h’) are: 

U = U  - h ’ 8  T 

v = v  + h ’ @  T 

The final formulation permits the spacing between the attachment 

point and the center of gravity to be different on each 

helicopter with the subscript 1 referring to the slave and the 

subscript 2 referring to the master. 

The aerodynamic forces in the helicopter body/gravity axes 

are: 

AXB = Xuu + ‘B 1 B1 TOe 

a 
AYB = Y V v + YAl A1 + To4 

0 

The body motion equations are about the helicopter center of 

gravity are: 

e 

I ~ = M ~ + M B + M ~ ~  Y U 9 B~ 

2 3  



e. 

I & = i v + L Q + c A 1  A1 
X V P 

The moment equations will be retained in body axes and the 

force equation will be transferred to frame axes. 

e 
AXF = AXB cos9 - AYB sin9 

AYF = AYB cos9 + AXB sin9 

e 
= A cos4 + j l  sin9 

- j r s  cos9 - A sin9 

T S S 

T S 

U 

- V 

0 

0 

0 

a 

In the force equations, the effect of the spacing between 

the attachment point and the center of gravity can be neglected. 

This is consistant with neglecting the stability derivatives Xq 

and Yp. 

Thus using the above transformation 

+ To(- f3  sin9 + 41 cos@) 

where 

X* = x cos 2 9 + Yvsin 2 9 U U 

X* V = (xu - yV) sin9 cos9 

Y* U = (xu - yV) sin4 cos9 
Yv * = Yv cos 2 l?i + xu sin 2 9 
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e If it is assumed that Xu = Y then 
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e 

e 
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This is a reasonable simplification and is used in equations 

of motion presented later. 

The linearized form of the aerodynamic forces is obtained 

by letting 4J = @ S O  for the slave helicopter and 4J = @MO for the 

master helicopter terms. 

To account for the spacing between the attachment point and 

the helicopter center of gravity, the moment equations are 

written about the attachment point. Thus the stability 

derivatives about the attachment point are denoted 

M* = M - h’ AXB ’ 

L* = L + h’ AYB ’ 

Note that AXB’ and AYB’ 

the thrust vector. 

are body axis forces and do not contain 

The moment equations for the helicopter written about the 

attachment point are: 

* *I + h ”  MH] 8 - h’MHG - Wh’8 = M 
[IY 

+ h ”  MH] ;6 + h’MHG - Wh’4 = L * 
[ IX 

The following terms are added to the equations of motion to 

account for the displacement of the helicopter center of gravity 

2 5  
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f r o m  t h e  a t t a c h m e n t  p o i n t .  T h e  i n e r t i a l  terms a r e :  

I* 

- s i n @  &I ) M~ 'M Mo M h '  2 H1(-c0sJI 

1 8  ,I 

- h i  L ( c o s ~ ~ ~ e ~  + ~ i n Q ~ ~ @ ~ )  

I. 

Mo M H  s i n *  + H1(-BT1cos$ YS Mo ( h i  I) {-ls C O S $  
- ' 

Mo 
Y 

I' , 
+ aT1 sin9 1 + Hz(eTz cos$ - &T2 s i n $  ) 

+ L(-ZBl c o s @  Mo ) 

Mo Mo Mo 

+ h i e M }  

2 6  
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IX 

In addition the gravity terms must be resolved as shown in 

the equations of motion and the following terms added to the body 

moment equations: 

I Y 

- 6M 
X 
I 

S 
e - 
IY 

- 6 s  

X 
I 

M H  
- g h; as 

X 

Introducing these terms and the resolution effects for helicopter 

orientation as noted leads to equations of motion or the form 

The system is described by sixteen degrees of freedom and there 

are eight controls. The matrix elements are given on the 

following pages. The yaw moment equations are gien in the text 

and not included in the matrices. The equations of motion for 

27 a 



* the simpler case described in Part I are obtained by choosing & S O  

= & M O  = 0, or + S O  = B M O  = n/2, and eliminating the yaw moment 

equations. 
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NON-PLANAR MOTION 

0 

0 

I) 

D 

D 

D 

previous sections that the complete equations of motion for the 

twin lift system decouple into independent sets of equations of 

motion if the lateral-longitudinal coupling terms due to 

aerodynamic stability derivatives are neglected in the 

helicopter models and the initial yaw angle of each helicopter is 

either 0 or 90’ (longitudinal axis of the helicopters 

perpendicular or parallel to the spreader bar). 

The uncoupled sets of equations of motion involve the 

following degrees-of-freedom if the initial orientation of the 

helicopters is such that their longitudinal axes are 

perpendicular to the frame ( Q M O  = Q S o  = 0 ) .  

Planar Motion (seven degrees of freedom) 

Non-planar Motion (seven degrees of freedom) 

/ 

The other two degrees of freedom, the yaw angles of each 

helicopter are uncoupled. If the initial yaw angles are 90’ ’  

then the pitch and roll angles are interchanged in the degrees 

freedom of the two cases. 

, 

The planar motion has been investigated extensively and 

results of this investigation are presented in Reference 1. 

this section the basic dynamics of the non-planar case are 

examined. The same physical parameters are used as in Re 

3 3  
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B 
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1. These are listed in Table I. The helicopters used in the 

example correspond nominally to the UH-60, Blackhawk. 

It was noted in the studies of the planar motion that if the 

tether lengths are equal (H = HI = H2) and the attachment point 

center of gravity spacing is the same on both helicopters, then 

the dynamic system can be further subdivided into sets of 

symmetric and anti-symmetric motions and considerable insight 

gained regarding the dynamics of this complex system. The anti- 

symmetric modes involve the two helicopters moving "in-phase" and 

are essentially the modes involved in translating the entire 

system laterally, i.e., in the plane of the paper in Figure 1. 

The symmetric modes involve essentially "out-of-phase'' motion of 

the two helicopters with the load stationary and are equivalent 

to those of a single helicopter tethered to a fixed point. See 

Reference 1 for additional discussion. 

A similar division or decoupling of the modes can be made in -I 
the non-planar case. Again using the terminology anti-symmetric' 

modes to refer to the case in which the two helicopters move "ii 

phase", the following coordinate relationships are involved: 

Anti-symmetric motion: 

This is a four degree of freedom system. The equations 0. 

are those of a helicopter with a sling load that acts l i  

compound pendulum ( 7 $ .  

motion. 

Figure'5 shows the geometry of 

3 4  



0 

e 

0 

Symmetric motion: 

- eM - - - e s ,  (eL = 0) 
'Bl' 'T1 - - 'T2' 

This is a three degree of freedom motion that involves only 

rotation of the system about a vertical axis through the load, 

spreader bar center of mass as  c '  i.'n in Figure 6 .  

The next section shows how the equations are decoupled by 

the introduction of new coordinates. 

Decoupling the Equations of Motion (Non-Planar case) 

The equations of motion for the non-planar case can be 

written as 

where 

e 

a 

e 

The matrices [ M I ,  [C], [K] and [B] are given following this 

section for this reduced degree of freedom case. 

The case in which the tethers are equal (H = Hi = H2) is 

considered and a new set of coordinates similar to those used in 

the planar case is introduced to decouple the equations. The 

decoupling procedure is as follows. 

Noting that the translational displacement of the master 

helicopter can be written as 

x M = x S + - eT2) + L & ~ ~  ( 3 )  

This coordinate is introduced and sum and difference coordinates 

are defined: 

3 5  



I 

0 

e 

M x + x  
S 

2 xx = 

OS + OM 
2 ce = 

T2 + e  
2 

- 'T1 xeT - 

A X = X  - X  M S 

- e s  A 0  = OM 

- 
"T - 'T2 - OT1 

( 4 )  

The load displacement C)L is chosen as the seventh coordinate. 

The spreader bar yaw motion $s i  can be eliminated as a motion 

variable, using the equation for XM given in equations ( 3 ) '  

Ax + H 
L AeT - - 

'B1 - L 

a 
Sum coordinates are associated with the anti-symmetric motion and 

difference coordinates are associated with the symmetric motion. 

The pitching moment equations for the master and slave 

helicopters can be written as 

' M H  II 2 M H  le M H  O M = M  * B 
B1 1 M  x + h '  - eM - gh' - .* * . *  * '  e M - M x  - ~ e  - h  - 

IY IY 
I M  
Y u M  9 M  

0 

* 
B1 1s = M  B 

.I * '  
- M:kZ - M 0 2 M H  - O s  - gh' MH I O s  

MH I, 
x + h '  I - h' - 

I s  Y Y Y OS Q S  

Sum and difference equations are obtained by adding and sub- 

tracting these equations. 

e 

* * *  MH I. 2 MH 'I MH * 
- MUZk* - M 10 -h '  - Ex + h' - I 10 -gh' - I 10 = MBIXBl 

IY Y Y 9 
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e 

e 

e 

e 

* 
AB 1 

* * *  M H  I#  2 M H  'I M H  

q Y IY IY 
AU8 - MuAk* - M A@ -h' I Ax + h' - A@ - gh' - be = M B 1  

Note that the pitching moment derivatives are expressed with 

respect to the tether point. In order to reform the other five 

equations it is convenient to introduce the following set of 

additional coordinates which describe the linearized 

displacements of the centers of mass of the spreader bar and 

load, and the master helicopter tether point. 

* xM = x - H AeT + L$,,  , x M = x M - h' €IM 
S 

* x = x - h' eS L xB = x S + H eT1 + 5 aBlY S 

L x = x + H eT1 + &Bl + z e L  L S 

The equations of motion in terms of these coordinates are: 

x equation, 
S 

- - - XB1 2XB1 

e 

0 

equation divided by H 'T1 

#I - *  M L  + M B  - h'M 8 
I. I .  .I 

MHxM + MBXB + M L X L  - xukM + g( 2 ) 'T1 + ToeM H M  

e 

QB1 equation divided by L 

3 7  
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0 

a 

0 

0 

e 

a 

e 

0 

e 

I* 1 S I  ICMB 19 - *  + ToeM - h'M 0 
M H : M + - ( M x  2 B B  + M L ) + -  L L  'B1 - 'uXM H M  

e L  equation divided by ZML 
$1 

x + g e L = o  L 

G T 2  equation divided by H 

** * ML + M R  II - 
+ h'MHQM = - X  B - M x  H M  + X k  u M  + g ( ~ -  'T2 - To 'M B 1  1M 

(13) 
Noting that 

1 H 
T QBl = AX + A 0  

x - x  = - z e L  B L 

Adding the G T 1  and O T 2  equations (10 + 1 3 )  

Adding the Q B l  and eT2  equations and multiplying by 2 ,  

It may be noted upon comparing equations ( 1 5 )  amd ( 1 6 )  that if 

the moment of inertia of the spreader bar about its center of 

mass is neglected then 

that is, the two tether angles two 'T2' implying that O T 1  = 

are equal if the spreader bar inertia is neglected. In t h i s  

case, one motion variable becomes redundant as does one equation 

of motion. XB and XL can be expressed as from (41, ( 8 )  and (14) 

as:- 

38  



0 
x xx + H zeT B 

(17) 
x = xx + H zeT + zeL L 

The sum coordinate equations (anti-symmetric equations) are 

formed from the x s  equation (9), and the load equation (12), the 

sum pitching moment equations ( 6 )  and the (Or1 + B T 2 )  equation 

( 1 5 ) .  Note that these substitutions transfer the pitching moment 

derivatives to the center of gravity. The anti-symmetric system 

equations of motion are: 

e 

e 

e 

a 

0 

e 

.* * cG - XuXk - h’X8 + g(l + p )  xe - gpzgT = XBIZBl 

II 

CX - h‘C8  - ZX * = o  

The difference coordinate equations (symmetric mode equations) 

are obtained by subtracting two times the Q B ~  equation from the 

xs equation, the difference moment equation, and a combination of 

the B T i ,  8 T 2 ,  and h i  equations. The symluetric system equations 

of motion are: 

A; - XuAk* + h ’ A i  + g(l + p )  A@ - gp = XBIAB1 

- MuAk* + 
I 1  

A8 - M A8 
9 “T 

@I 

T + 6HAeT + g A ?  

= MBIABl 

= o  

= o  * AX - h’A8 - AX 

Thus the new coordinates invoved in these uncoupled sets of 
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e 

e 

e 

e 

equations of motion are: 
T { E X ,  10, zeT, e , )  'NP, AS 

T = { A x ,  A 0 ,  AeT} 'NP,S 

The parameter 6 is a non-dimensional expression of the spreader 

bar moment of inertia. If the spreader bar moment of inertia is 

equal to zero, 6 = 0, and the last equation in the symmetric 

case gives A ~ T  = 0 and the symmetric set reduces to a two degree 

of freedom system. 

Note that x refers to the displacement of the tether 

attachment point while xS refers to the helicopter center of mass 

displacement. The characteristics of these two systems are now 

considered. 

Anti-symmetric Modes 

It can be noted that the anti-symmetric equations (18) are 

the equations of motion of a helicopter coupled to a sling load 

which is a compound pendulum. The parameter @ represents the 

ratio of the two supported masses, the spreader bar mass and the 

load mass. In the limit o f  no spreader bar mass ( B  = O ) ,  C8T = 

Q L ,  the load equations of motion reduce to those of a single 

pendulum of length (H + Z). Comparison with the planar anti- 

symmetric equations of motion shows that for h' = 0, Z = 0 (load 

on spreader bar) and @ = 0, the equations of motion are identical 

if the following interpretation is made. 

+ H ( z ~ ~  - ce) = H(Q,, - ce) 

The coupled frequencies of the double pendulum system can be 

determined from the characteristic equation of the two degree of 

4 0  
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0 

e 

e 

e 

e 

e 

0 

freedom system for E & ,  e L .  The characteristic equation of this 

system is, 

When B = 0 (no spreader bar mass) there is a single frequency 

and when f3 + 1 (no load mass) there are two frequencies 

w2 = g 
sl H 

Figure 7 shows the variation of these uncoupled frequencies with 

B .  At the nominal value of B ,  with load ( f 3  = ,054) the two 

frequencies are: 

w =  .826 rad/sec sl 

o = 8 . 1 6  rad/sec S 2  

There is a wide variation in one of the frequencies associated 

with the load as the load is reduced to zero (fl  = 1.0). 

The anti-symmetric equations of  motion are those primarily 

associated with maneuvering the system from place to place. The 

complete system involves these two sling modes coupled to the 

helicopter dynamics. For the nominal load ( B  = .054) the high 

frequency ( 0 ~ 2 )  associated with the sling is only weakly coupled. 

Symmetric Modes 

The symmetric motion as described by equations (19) show as 

noted above that if the spreader bar inertia distribution is 

neglected then 6 + 0 and AeT = 0 indicating that the tethers 

remain vertical throughout the motion in this limit. The tether 

cable tension provides a restoring moment as indicated by the 
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equations of motion. With the spreader bar inertia included 

there is an angular oscillation associated with the spreader bar. 

The frequency of this motion uncoupled from the helicopters is 

obtained from the last of equations (19): 

where 

The nominal value of fl with load is .054 and therefore with H = 

13.25 ft, this frequency is: 

= 12.07 rad/sec wllJ 

The spring in this motion is tension in each tether. Since this 

frequency is high compared to the helicopter dynamics it is 

probably quite a good approximation to determine the influence of 

the spreader bar inertia on the modes associated with the 

helicopter dynamics by using a quasistatic approximation. 

If the entire system is moving at a frequency a, then the 

differential tether angle is 

a 2 &  

OQ 
H heT (-) 

Thus the tethers tend to remain relatively near vertical as 

indicated by the limit 6 + 0, and the spreader bar follows the 

helicopter motion, i.e., 
4 2  



- Ax w 2  Ax (1 + (-) ) z - - -  
L 

OdJ 
‘B1 L 

0 

0 

0 

The equations of motion assuming quasi-static bar motion are ( e  
< <  1) obtained from equations (19) and ( Z O ) ,  

(1 + 6 p )  kk - XuAk* - h’ii + g(l + p )  A0 XB1 AB1 (21) 

+ A; - M A0 
9 

+ E gp AQ Y 
- = MB1 AB1 

Thus fully loaded with 6 = .018, p = . 4 3  the effect quasi-static 

tether rotation, proportional to 6 p ,  on the helicopter modes is 

quite small. With no load, p is very small and it would also be 

expected that the coupling between the angular motion of the 

spreader bar and the helicopter motion is weak. Note that the 

uncoupled frequency of the spreader bar motion varies 

significantly with load due to the tension variation as shown in 

Figure 8 .  

The limiting mode shapes in the symmetric motion with 

variation in spreader bar inertia a r e  s h o w n  in F i g u r e  9. It a l s o  

can be seen that in the limit of very large spreader bar inertia, 

Ax = H AQT and the anti-symmetric equations become identical to 

the symmetric planar case. That is, the spreader bar tends to 

remain fixed in space and a divergent mode will occur for the 

attachment point located below the center of gravity of the 

helicopter. This limit can be readily seen by changing 

coordinates in the difference equations replacing A& by *si. 

However the actual system will tend to be far from this limit for 

the physical parameters typical of this system. 
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0 

a 

a 

a 

a 

a 

In the practical case where the non-dimensional parameter 

measuring the spreader bar inertia ( 6 )  is small the character- 

istic equation for the anti-symmetric coupled motion, neglecting 

~ J J  terms in equation (21), which is equivalent t o  assuming that 

the tethers remain vertical is, 

+ + 
MU 

+ 

For c y  positive, there is a stabilizing tendency, i.e., since in 

this limit the tethers are vertical an effective attitude 

stability is provided by tether tension acting at the attachment 

point below the center of gravity of the helicopter. Placing the 

attachment point above the center of gravity acts like an 

unstable attitude feedback. This stabilizing trend is opposite 

t o  that shown for the planar symmetric case in Reference 1. 

Figure 10 shows numerical values for the modes o f  motion for 

the non-planar system with load (the symmetric and anti-symmetric 

modes) as a function of tether attachment point location relative 

to the helicopter center of mass. The uncoupled helicopter modes 

for this sample calculation based on the parameters in Table I 

are - . 8 2  and +.172 _+ .572i. The destabilizing effect of locating 

the attachment point above the center of gravity can be seen from 

the figure. The movement of the complex pair is very similar to 

that obtained with attitude feedback. 

a 
4 4  
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TABLE I 

NUMERICAL VALUES OF SYSTEM PARAMETERS 

Helicopter Mass MH = 435 slugs 

e 

e 

0 

e 

e 

Load Mass M H  = 353 slugs 

Spreader Bar Mass MB = 20 slugs 

Slave Tether HI = 13.25 ft 

Master Tether H2 - 13.25 ft 

Spreader Bar Length L = 68.9 ft 

Load distance below spreader bar Z = 34.5 ft 

Tether Attachment point/CG spacing h’ = 3.5 ft (nominal) 

Helicopter moment of inertia in pitch I = 43,000 slug ft 

Helicopter Stability Derivatives (referenced to CG) 

2 
Y 

x = - . 0 6 0 2  sec-l 
U 

-1 .415 sec M = -  
9 

M = .00538 (ft-sec)-’ 
U 

Non-dimensional parameters: 

+ ML = 0.43 MB 
2MH 

l J =  

= .054 MB 
ML + MB 

B =  

(uniform mass distribution) 
h’MH 
I 

E = - -  - -030 
Y Y 
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SUMMARY 

A full set of equations of motion for the twin lift system, 

linearized about a hover trim condition have been derived and 

presented. It is shown that this full set of equations of motion 

decouples into simpler sets of equations of motion if the 

aerodynamic coupling derivatives of the helicopters are 

neglected. One of these decoupled sets of equations of motion 

(referred to as the planar set) was studied at length in 

Reference 1. The other decoupled set (referred to as the non- 

planar set) is examined here. It is shown that when the 

geometric configuration of the twin-lift is symmetric that a 

further decoupling is possible into anti-symmetric and symmetric 

sets of equations. One set of these reduced equations of motion 

referred to as the anti-symmetric set is directly equivalent to 

the longitudinal motion of a single helicopter with a sling load. 

The second set, referred to as the symmetric set corresponds to 

rotation of the entire system without load motion. As in the 

case of the planar symmetric motion, the location of the tether 

attachment point. influences the stability of the non-planar 

symmetric mode. The trend is opposite however in the non-planar 

, case in that an attachment point below the helicopter center of 

gravity gives a favorable effect on the stability. The effect is 

not as strong however as the unfavorable effect on the planar 

. symmetric mode shown in Reference 1. 
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